The University of Waikato - Te Whare Wānanga o Waikato
Faculty of Science and Engineering - Te Mātauranga Pūtaiao me te Pūkaha
Waikato Home Waikato Home > Science & Engineering > Physics Stop
Staff + Student Login

October 2014 Archives

As we all know, a scientifically-minded toddler plus a piece of technology can lead to unexpected results. This is the result of Benjamin playing with a retractable steel tape measure at the weekend. How we came to break the case apart I don't know, but the results are pretty (the cellphone shot in poor light doesn't do justice to the artwork): 





I like the koru-shape made by the end. The measure has curled itself into a complicated form rather reminiscent of a protein structure, with sections of helices and straighter lengths. Although the mechanisms are different (protein structure has a lot to do with the intricaces of chemical bonding) the physical process is similar -  the structure works itself to a local minimum of energy. Just how this happens  is all rather complicated from a physics perspective. Perhaps the most obvious example of twists of this form is in telephone cords. The phenomenon has even lent its name to a type of structure seen in thin films - the 'telephone cord buckle'. Unfortunately Benjamin didn't give me any warning about what was going to happen - otherwise I'd have filmed it (and he would probably have retreated to a safe distance - the whole unravelling was pretty energetic). 

BUT...since Karen is an occupational therapist and has accumulated large numbers of free tape measures as corporate freebies in her career, we could maybe spare a few for high-speed filming.

| | Comments (0)

The Engineering Design Show is currently in full swing here, with the competitions for the various design projects. The white-line followers kicked off proceedings. They were pretty impressive, with all but one team successfully being able to follow the (very squiggly) line without mistakes. There were traps to confuse the robots - the line got thinner and thicker, crossed over itself, had abrupt corners and so on, but the robots were well programmed and coped with this easily. The winning group was impressive indeed. They had some very carefully optimized control parameters, meaning that the robot was (a) really straight and fast on a straight-line section but also (b) precise round the turns, slowing down just enough to take each turn at about the right speed. I think anyone would struggle to get something going quicker than this one. 

On show at the moment are the third year mechanical engineering students who have designed a pin-collecting machine. The idea is that the vehicle pulls still pins (about 5 cm in length, maybe 5 mm in diameter) out of a board - the one that collects all the pins in the quickest possible time and drops them back in the collecting bin is the winner. The most striking conclusion from this exercise is the emphasis on the old adage "To finish first, first you must finish". A good proportion of the entries have died part way through the process - pins have jammed the mechanisms, the motors have failed, or, in one disappointing case, the machine collected the pins in lightning quick time and then failed to go back to deposit them in the collecting bin. Also, we've seen one machine disqualified for being downright dangerous - its first run saw it pulling pins out of the board and firing them across the room causing spectators to beat a hasty retreat. 

But the winner (or so it looks) has pushed their luck to the limit.  The "...first you must finish" line is actually not quite correct. More accurate would be to say "...second you must finish. First, you must start". They've admitted to putting 5 volts over a motor rated at 3 volts in practice just before the event, and frying the motor. They then had to hurridly locate a replacement and install it while the competition was in progress. Missing their first two rounds, they appeared looking hot and sweaty just in time for their run in round 3 out of 4 and simply destroyed the rest of the competition. (Presumably it won't be long before they destroy their new motor too, but it's survived long enough to win, according to the rules, and that's what counts.)

Overall the design show has been great fun to be a part of and has really demonstrated the skills that the students have acquired. Well one everyone involved!

Postscript 29 October 2014: We're a hit with the Waikato Times!

| | Comments (0)

Yesterday I read a neat little report by one of our final year engineering students. As part of her final year project, she'd been looking at misconceptions in first-year students' thinking about electromagnetism. Learning about electric and magnetic fields isn't easy. For one thing, you can't actually see them. Therefore it's not at all obvious how something influences them. It's not like learning mechanics  - where you can swing pendulums of different lengths and see for yourself the effect it has on the period of oscillation - these fields are invisible and therefore some indirect way of probing them is required. That adds its own problems. 

Most of the problems identified by the student weren't terribly surprising. The theory of electromagnetism is full of horrible cross-products, which are a mathematical oddity in themselves* (try to read the Wikipedia article on them - I bet you won't get very far). It's hard relating experiment to theory when the theory is a struggle to grasp. Many misconceptions relate to whether fields and currents lie parallel or perpendicular to each other, and which generates a force and which doesn't. 

But one problem that was identified by the research (based on formative tests) was the slap-dash approach to terminology. Many students used terms such as 'magnetic field', 'B-field', 'flux', 'force', 'current', extremely loosely. They have very specific, and different meanings, and they are not interchangable.  I heard a case of this in the lab today - a student talked to me about the force of the wire, when he meant the current in the wire. I think there are two questions here: 1. Using terminology loosely may simply be a consequence of not understanding what the terminology is trying to describe, and therefore is a symptom of  deeper problems with grasping the concepts. Alternatively, 2. The slopiness in using terminology may actually be the root cause of some of the students problems. How can you explain something if you're not using words correctly? - you end up confusing yourself. I'm writing a journal article at the moment - and it's obvious that the process of putting down my thinking on paper, in a precise manner that someone else can follow, does wonders for cementing my own understanding of it (or, sometimes, exposing my own lack of understanding of it when I thought I had grasped it.) 

It wouldn't surprise me if both cases formed a feedback loop (vicious circle) where lack of understanding leads to poor use of terminology, which in turn prevents students acquiring the right understanding. I feel like a little research project is brewing here for next year...

*Cross-products would cease to be an oddity if we put them where they belong - in the dustbin. They are a consequence of a desparate attempt to represent areas as vectors. If we recognized areas for what they actually were - areas (or bivectors) - and worked with geometric algebra, physics theory would become so much easier. But, alas, we are stuck with historical conventions that are probably too far ingrained to break. 

| | Comments (0)