The University of Waikato - Te Whare Wānanga o Waikato
Faculty of Science and Engineering Te Mātauranga Pūtaiao me te Pūkaha
Waikato Home Waikato Home  >  Science & Engineering  >  About Us  >  Staff  >  Vic Arcus Staff + Students Login |  - Logout

Professor Vic Arcus

Professor (Biological Sciences)

Qualifications: BSc, MScWaikato, PhD Cambridge

Research Interests

Research and postgraduate study are encouraged in the Department of Biological Sciences. All research students acquire basic research skills and a knowledge of techniques, as well as training in specialist disciplines.

Our research focuses on molecular biology, structural biology and protein engineering. We are interested in the three-dimensional structures of several protein families and we use this information to study their biochemical functions. We use X-ray crystallography, protein NMR and other biophysical techniques. We are also interested in protein engineering to manipulate the structure and function of proteins. Here, we use site-directed mutagenesis and combinatorial mutagenesis in combination with structure determination to engineer new proteins.

Structural and Functional Biology of Microbial Toxin-Antitoxin Networks

Toxin-antitoxin pairs in bacteria act in concert to maintain low-copy number plasmids in daughter cells. It is also thought that these protein pairs are involved in microbial growth arrest under conditions of nutrient starvation and stress. We are pursuing the structures of a number of toxin-antitoxin complexes in an effort to find out more about the mechanism of cell-cycle arrest in Mycobacterium tuberculosis and M. bovis.

Protein Engineering to Produce Artificial Antibodies

We use a common protein scaffold to engineer a library of variants by randomizing up to seventeen amino acid positions on one face of the protein. We can then pick variants with desirable traits out of this library using phage display. This process is analogous to the selection of recombinant antibodies with the advantage that our scaffold is small and thermostable. Potential biotechnology applications are the current focus of our efforts.

Structural Biology of Proteins Involved in Plant Flowering

We are interested in several proteins which serve as checkpoints in triggering photoperiodic flowering in plants and their relationship with circadian controlled processes. We are using a range of biophysical techniques including X-ray crystallography, NMR, circular dichroism and electron microscopy to look at the structure and function of these proteins. Currently we are focusing on the proteins GI, FT and CO.

Endophyte Non-Ribosomal Peptide Sythetases

Very recently, our collaborators at AgResearch and Massey University have identified large operons in the symbiotic fungus Neotyphodium lollii, which code for non-ribosomal peptide sythetases. These genes code for proteins which are responsible for the biosynthesis of the important secondary metabolites. We are determining the structures of a number of domains from these operons to look at the molecular details of the biosynthesis of peramine.

Research Supervised


  • Chonira, Vikas (in progress). Engineering of an OB-fold protein scaffold for molecular recognition of cancer-specific intracellular kinases.
  • Mulholland, Claire (in progress). Local and international origins of tuberculosis in New Zealand.
  • Prentice, Erica (in progress). The temperature dependence of enzymatic rates.
  • Shim, Ko Un Konny (in progress). Investigating the properties of a 3-billion-year-old enzyme.
  • Vickers, Chelsea (in progress). Determining the function and regulation of the prokaryotic VapBC toxin-antitoxin protein complexes.
  • Zhang, Heng (in progress). Characterising the three dimensional structure and function of a Bovine Salivary Protein (BSP30b).
  • Oulavallickal, Tifany (submitted). Reconstruction of aroa/mura ancestral enzymes and screening of potential inhibitors.
  • Hennebry, Alexander (2014). Identifying the signalling pathway of a novel Myostatin Splice Variant (MSV).
  • Ruthe, Alaine (2014). Time to diagnosis and persistence: The two major determinants of effective tuberculosis control.
  • Andrews (nee Littlejohn), Emma (2013). The biology and biochemistry of PhoH2 proteins.
  • Summers, Emma (2013). The biochemistry and structural biology of Lsr2 from Mycobacterium tuberculosis.
  • Cumming, Mathew (2012). Structural and enzymatic characterisation of nucleoside triphosphate diphosphohydrolases from Trifolium repens and Dolichos biflorus.
  • McKenzie, Joanna (2011). The biochemistry of VapBC toxin-antitoxins.
  • Steemson, John (2011). Directed evolution and structural analysis of an OB-fold domain towards a specific binding reagent.
  • Till, Marisa (2011). Fibre degrading enzymes from Butyrivibrio proteoclasticus.

MSc (Research)

  • Dillon, Brooke (in progress).
  • Kraakman, Kirsty (in progress). Predicting carbon dioxide contributions from respiration and photosynthesis using Rhodobacter sphaeroides and macromolecular rate theory.


  • McMillan, Joel (2013). Biochemical characterisation of reconstructed ancestral CM-DAH7PS enzymes.
  • Prentice, Erica (2013). Characterisation of enzyme evolution through ancestral enzyme reconstruction.
  • Sharrock, Abigail (2013). Characterisation of VapBC toxin-antitoxins from Mycobacterium tuberculosis.
  • Duyestyn, Jo (2012). Mechanism of RNase cleavage by VapC from Pyrobaculum aerophilum.
  • Easter, Ashley (2010). Decoupling enzyme catalysis from thermal denaturation.

BSc (Hons)

  • Shim, Ko Un Konny (2015). The implementation of a new method of ancestral sequence reconstruction incorporating species phylogeny.


Molecular biology; structural biology; protein engineering.

Recent Publications

  • Hobbs, J. K., Hobbs, J. K., Prentice, E. J., Groussin, M., Groussin, M., & Arcus, V. L. (2015). Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties. Journal of Molecular Evolution. doi:10.1007/s00239-015-9697-5

  • Arcus, V. L., & Pudney, C. R. (2015). Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions. FEBS Letters, 589(17), 2200-2206. doi:10.1016/j.febslet.2015.06.042

  • Ashmead, H. M., Negron, L., Webster, K., Arcus, V., & Gerrard, J. A. (2015). Proteins as supramolecular building blocks: Nterm-Lsr2 as a new protein tecton. Biopolymers, 103(5), 260-270. doi:10.1002/bip.22592

  • Groussin, M., Hobbs, J. K., Szoellosi, G. J., Gribaldo, S., Arcus, V. L., & Gouy, M. (2015). Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees. Molecular Biology and Evolution, 32(1), 13-22. doi:10.1093/molbev/msu305

View All research publications by Vic Arcus

Contact Details

Room: C.2.11
Phone: +64 7 838 4679

Stay Connected

Sci & Eng Facebook Twitter You Tube

Contact the Faculty

Science & Engineering contacts
0800 438 254
Address + Map

Our People

Kiriana Isgrove

Kiriana Isgrove
BSc; MSc(Research) in Biological Sciences

Student Profiles »

Winter 2015