The University of Waikato - Te Whare Wānanga o Waikato
Faculty of Science and Engineering Te Mātauranga Pūtaiao me te Pūkaha
Waikato Home Waikato Home  >  Science & Engineering  >  About Us  >  Staff  >  Vic Arcus Staff + Students Login |  - Logout

Professor Vic Arcus

Professor (Biological Sciences)

Qualifications: BSc, MSc Waikato, PhD Cambridge

Research Interests

Research and postgraduate study are encouraged in the Department of Biological Sciences. All research students acquire basic research skills and a knowledge of techniques, as well as training in specialist disciplines.

Our research focuses on molecular biology, structural biology and protein engineering. We are interested in the three-dimensional structures of several protein families and we use this information to study their biochemical functions. We use X-ray crystallography, protein NMR and other biophysical techniques. We are also interested in protein engineering to manipulate the structure and function of proteins. Here, we use site-directed mutagenesis and combinatorial mutagenesis in combination with structure determination to engineer new proteins.

Structural and Functional Biology of Microbial Toxin-Antitoxin Networks

Toxin-antitoxin pairs in bacteria act in concert to maintain low-copy number plasmids in daughter cells. It is also thought that these protein pairs are involved in microbial growth arrest under conditions of nutrient starvation and stress. We are pursuing the structures of a number of toxin-antitoxin complexes in an effort to find out more about the mechanism of cell-cycle arrest in Mycobacterium tuberculosis and M. bovis.

Protein Engineering to Produce Artificial Antibodies

We use a common protein scaffold to engineer a library of variants by randomizing up to seventeen amino acid positions on one face of the protein. We can then pick variants with desirable traits out of this library using phage display. This process is analogous to the selection of recombinant antibodies with the advantage that our scaffold is small and thermostable. Potential biotechnology applications are the current focus of our efforts.

Structural Biology of Proteins Involved in Plant Flowering

We are interested in several proteins which serve as checkpoints in triggering photoperiodic flowering in plants and their relationship with circadian controlled processes. We are using a range of biophysical techniques including X-ray crystallography, NMR, circular dichroism and electron microscopy to look at the structure and function of these proteins. Currently we are focusing on the proteins GI, FT and CO.

Endophyte Non-Ribosomal Peptide Sythetases

Very recently, our collaborators at AgResearch and Massey University have identified large operons in the symbiotic fungus Neotyphodium lollii, which code for non-ribosomal peptide sythetases. These genes code for proteins which are responsible for the biosynthesis of the important secondary metabolites. We are determining the structures of a number of domains from these operons to look at the molecular details of the biosynthesis of peramine.

Research Supervised


  • Chonira, Vikas (in progress). Engineering of an OB-fold protein scaffold for molecular recognition of cancer-specific intracellular kinases.
  • Vickers, Chelsea (in progress). Determining the function and regulation of the prokaryotic VapBC toxin-antitoxin protein complexes.
  • Cumming, Mathew (2012). Structure and Function of bacterially expressed soluble human ecto-nucleoside triphosphate diphosphohydrolase 1 (s-NTPDase1/s-CD39)
  • Hennebry, Alexander (in progress). Identifying the signalling pathway of a novel splice-variant of myostatin
  • Andrews (nee Littlejohn), Emma (2013). Biochemistry and biology of Pin domain proteins in TB
  • Oulavallickal, Tifany (in progress). Reconstruction of aroa/mura ancestral enzymes and screening of potential inhibitors.
  • Summers, Emma (2013). The biochemistry and structural biology of Lsr2 from Mycobacterium tuberculosis
  • McKenzie, Joanna (2011). Structure & Function of PIN-Domain Toxin-Antitoxin Protein Arrays
  • Ruthe, Alaine (in progress). The role of the toxin-antitoxin repertiore in pathogen survival and persistence
  • Steemson, John (2011). Directed Evolution of a Protein Domain using Protein Engineering
  • Till, Marisa (2011). Structural and Functional Investigation of Cellulase Enzymes from the Ruminant Bacterium Clostridium proteoclasticum


  • Prentice, Erica (in progress). Ancestral enzyme reconstruction of LeuB
  • Duyestyn, Jo (2012) The Function of VapC: Determining the mechanism and specificity of an RNase
  • McMillan, Joel (2013) Biochemical characterisation of reconstructed ancestral CM-DAH7PS enzymes
  • Sharrock, Abigail (2013) Characterisation of VapBC toxin-antitoxins from Mycobacterium tuberculosis
  • Easter, Ashley (2010). Decoupling enzyme catalysis from thermal denaturation


Molecular biology; structural biology; protein engineering.

Contact Details

Room: C.2.11
Phone: +64 7 838 4679

Stay Connected

Sci & Eng Facebook Twitter You Tube

Contact the Faculty

Science & Engineering contacts
0800 438 254
Address + Map

Our People

Jamie Bridson

Jamie Bridson
BSc; MSc in Chemistry

Student Profiles »

Winter 2015