Associate Professor Michael R. Mucalo

Associate Professor (Physical Chemistry); Associate Dean (Postgraduate)

Qualifications: MSc (Hons, First Class) Auckland, PhD Auckland

Personal Website:

Research Interests

Biomaterials, Calcium phosphate chemistry, Metal colloids (nanoparticles), IR spectroelectrochemistry of  various systems in cyanide or pseudohalide-containing electrolytes Application of IR spectroscopy, Solid State NMR and X-ray Photoelectron Spectrometry to Research, Drug Delivery, Creation of value added products from waste resources in New Zealand

My research interests cover a broad range of topics many of which are very topical within the international research environment. The first of these, Biomaterials, refers to the study of materials which are biocompatible with the body and so suitable for use as implants or prostheses. I have a particular interest in calcium phosphate-based materials chemistry which arises out of the fact that hydroxyapatite (Ca10(PO4)6(OH)2 is the principal component of human and animal bone. The amount of fundamental and applied research involving the synthesis, chemical reactions and behaviour of hydroxyapatite as an implant in the body is huge. This is due principally to hydroxyapatite's bioactivity (i.e. ability to bind to bone in vivo) as opposed to stainless steel, alumina and zirconia which comprise the more classically used bioinert/biotolerant materials which do not have this bone-bonding ability. A large amount of research supported by both New Zealand and overseas funding sources has been carried out on the use of processed, waste bovine bone from agricultural sources as a bone replacement material in humans. The work emerging from this research which has involved many collaborations between various institutions both here and abroad, achieved both national and international recognition and has culminated in a clinical study where the osteoconductivity of the materials was tested in a sheep model. 

Allied with this work of a general biomaterials theme is a research interest in  drug delivery for achieving slow steady release of drugs for veterinarian or human applications. I also have an interest in the use of various spectroscopic techniques for characterising materials such as IR spectroscopy and solid state NMR spectroscopy. 

My other research area is in colloids; these are dispersions of particles that possess diameters on the borderline between that characteristic of classical bulk solids and atoms and molecules. Colloids have been famous in antiquity but have only been properly scientifically investigated since the mid 19th century when the first paper to be published on gold sols was published by Michael Faraday. Thereafter colloids were a popular topic of study especially in Germany with numerous papers published in the early years of the 20th century. After a lull of 80 years or so, research into what is now currently called "nanoparticle systems" has experienced a very strong renaissance due to their potential applications in "nanotechnology", the current buzzword of popular science. Fundamental chemistry research in this area focus on synthesis, particle size distributions, size and shape and catalytic properties as well as their optical properties. My research has focussed on synthesis, particle size and surface properties of precious metal colloids including Pt, Pd, Rh and Re using modern techniques not formerly used to study these systems in earlier days.

Spectroelectrochemistry is popularly referred to as a "marriage" between electrochemistry and spectroscopy. The technique arose because the techniques traditionally used in electrochemistry such as cyclic voltammetry only give rather indirect information on processes occurring at the electrode/electrolyte interface in working electrochemical cells. The use of a spectroscopic technique in conjunction with electrochemical techniques provide molecular information that can be associated with various observations gleaned from the voltammetric techniques. Using this approach a myriad of systems can be studied and my speciality is looking at some little studied metal/cyanide or metal/pseudohalide ion corrosion systems which are well suited to study by infrared spectroscopic techniques. Research done by previous PhD students that I have supervised has also involved the use of techniques such as X-ray Absorption Spectroscopy to do EXAFS./XANES which is made possible by access to the Australian Synchrotron in Mlebourne.

Research Supervised

Currently Supervised:


  • Tait, Geoff (2016). Studies on Alumina Gels.
  • Ratnayake, Jithendra (external supervisor of) (2014-) New Zealand Animal Bone as a replacement material (at Otago University).


  • McQuiston, Dylan (2015). Studies on Controlled Release Drug Delivery involving Pharmaceutical Polymorphs for Human Applications
  • Mackintosh, Liam (2015). Marine Derived Calcium Phosphates.
  • Lowry, Hannah (2017). Development of a wax-based bolus for controlled release for veterinary applications

Teaching Commitments


Chemistry; Health; Waste; X-Ray

General colloid chemistry and measurements of their particle size distribution and surface charge; biomedical materials; IR spectroscopy and IR microscopy, Design of Controlled Release Drug Delivery Matrices for Agricultural or Biomedical purposes, In situ Electrochemistry of Cyanide-containing systems at various metal electrodes Categories: Chemistry; Colloid Chemistry, Electrochemistry, Biomaterials/Biomedical Materials Chemistry, Controlled Release, Characterisation of solid pharmaceuticals, Industrial Chemistry, Creating added value products from waste materials

Recent Publications

  • Mucalo, M. R., Alwis, K., Ingham, B., Kappen, P., & Glover, C. (2016). In situ IR, XAS and ESMS-based studies of electrically polarized nickel, copper and gold electrode systems with pseudohalide ions in neat DMF and DMSO electrolytes. In ICEI 2016 Singapore, International Conference on Electrified Interfaces. Singapore.

  • Smith, T. S., Lane, J. R., Mucalo, M. R., & Henderson, W. (2016). Cycloaurated gold(III) complexes derived from the functionalised catecholate ligands alizarin and 3,4-dihydroxybenzaldehyde. Transition Metal Chemistry, (online), 1-9. doi:10.1007/s11243-016-0056-1

  • Saeed, H., Hartland, A., Hamilton, D., & Mucalo, M. (2016). Iron, phosphorus and manganese interactions in a seasonally-stratified lake system. In Goldschmidt 2016. Yokohama.

  • Ratnayake, J. T. B., Gould, M., Shavandi, A., Mucalo, M. R., & Dias, G. J. (2016). Development and characterization of a xenograft material from New
    Zealand sourced bovine cancellous bone. Journal of Biomedical Materials Research Part B Applied Biomaterials. doi:10.1002/jbm.b.33644

View All research publications by Michael Mucalo

Contact Details

Room: FG.06C
Phone: +64 7 838 4404